Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Holger Braunschweig,* Frank Michael Breitling and Fabian Seeler

Institut fuer Anorganische Chemie, Universitaet Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany

Correspondence e-mail:
h.braunschweig@mail.uni-wuerzburg.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.045$
$w R$ factor $=0.114$
Data-to-parameter ratio $=17.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

rac-(Diisopropylamino)(1-indenyl)(isopropylamino)borane

In the racemic title compound, $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{BN}_{2}$, the B and the N atoms are virtually trigonal-planar coordinated and the presence of $\mathrm{B}=\mathrm{N}$ partial double bonding is confirmed by the $\mathrm{B}-\mathrm{N}$ bond lengths of 1.4154 (18) and 1.4178 (18) \AA.

Comment

Ligand precursors related to the title compound rac-(diisopropylamino)(1-indenyl)(isopropylamino)borane, (I), have been previously employed for the synthesis of boronbridged constrained-geometry complexes. These complexes exhibit activity for the polymerization of ethene and higher α olefins when activated with MAO (methylaluminoxane) (Braunschweig et al., 2000, 2004). In comparative studies, a strong influence of the ligand substitution patterns in corresponding complexes has been demonstrated on both catalyst activity and polymerization characteristics (Stevens 1994), justifying the synthesis of a series of boron-bridged analogues.

(I)

The structure of (I) (Fig. 1) in the solid state largely resembles that of its corresponding N-phenyl-substituted counterpart $\left(\eta^{1}-\mathrm{C}_{9} \mathrm{H}_{7}\right) \mathrm{B}\left(\mathrm{N}^{\mathrm{i}} \mathrm{Pr}_{2}\right) \mathrm{N}(\mathrm{H}) \mathrm{Ph}$ (Braunschweig et al., 2003). Compound (I) adopts C_{1} symmetry in the crystal structure. The crystal structure confirms the constitution assumed by NMR spectroscopy, with boron being attached to the $s p^{3}$-hybridized C atom of the indenyl system. The B1 and N 2 centres adopt trigonal-planar geometries, with the central atoms lying only 0.015 (B1) and $0.025 \AA$ (N2) out of the planes of their respective substituents. These two trigonal planes are virtually coplanar with torsion angles of 176.35 (12) (C16$\mathrm{N} 2-\mathrm{B} 1-\mathrm{N} 1)$ and $0.2(2)^{\circ}(\mathrm{C} 13-\mathrm{N} 2-\mathrm{B} 1-\mathrm{N} 1)$. The $\mathrm{B} 1-\mathrm{N} 1$ and $\mathrm{B} 1-\mathrm{N} 2$ bond lengths of 1.4154 (18) and 1.4178 (18) \AA, respectively, are equivalent within experimental error, indicating equal π-contributions from both amino groups. The N2-

Received 16 June 2005
Accepted 23 June 2005 Online 6 July 2005

organic papers

bound isopropyl group syn to the indenyl moiety (which is coplanar to within $0.007 \AA$) is oriented such that the methine proton is directed towards the middle of the five-membered ring, a conformation also seen in the corresponding compound $\left.\left(\mathrm{C}_{9} \mathrm{H}_{7}\right) \mathrm{B}\left(\mathrm{N}^{\mathrm{i}} \mathrm{Pr}_{2}\right) \mathrm{N}(\mathrm{H}) \mathrm{Ph}\right)$ with $\mathrm{H}-\pi$ distances to the centres of the $\mathrm{C} 2=\mathrm{C} 3$ olefinic and $\mathrm{C} 1=\mathrm{C} 9$ aromatic bonds of 2.446 and $2.509 \AA$, respectively. No short intermolecular contacts were observed.

Experimental

The title compound was prepared by a modified literature procedure (Braunschweig et al., 2003) by sequential reaction of ${ }^{i} \mathrm{Pr}_{2} \mathrm{NBCl}_{2}$ $(2.16 \mathrm{~g}, 11.9 \mathrm{mmol})$ with lithium indenide ($1.45 \mathrm{~g}, 11.9 \mathrm{mmol}$) and lithium isopropylamide $(0.77 \mathrm{~g}, 11.9 \mathrm{mmol})$ in a hexane-toluene mixture. Recrystallization from hexane at 243 K afforded (I) exclusively as the 1 -indenyl isomer in 35% yield in the form of pale-yellow crystals suitable for single-crystal X-ray diffraction.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{BN}_{2} \\
& M_{r}=284.24 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=8.1029(8) \AA \\
& b=14.0352(14) \AA \\
& c=15.6679(15) \AA \\
& \beta=100.503(2)^{\circ} \\
& V=1752.0(3) \AA^{\circ} \\
& Z=4
\end{aligned}
$$

$D_{x}=1.078 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4341
\quad reflections
$\theta=2.6-26.1^{\circ}$
$\mu=0.06 \mathrm{~mm}^{-1}$
$T=173(2) \mathrm{K}$
Tablet, yellow
$0.25 \times 0.20 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector	3471 independent reflections
\quad diffractometer	2751 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.032$
Absorption correction: multi-scan	$\theta_{\max }=26.1^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 2002)	$h=-10 \rightarrow 10$
$T_{\min }=0.972, T_{\max }=0.99$	$k=-17 \rightarrow 17$
16287 measured reflections	$l=-19 \rightarrow 19$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0505 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$	$+0.473 P]$
$w R\left(F^{2}\right)=0.114$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$S=1.02$	$(\Delta / \sigma)_{\max }=0.001$
3471 reflections	$\Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3}$
196 parameters	$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$
H-atom parameters constrained	

H atoms were visible in difference Fourier maps and were subsequently placed at idealized positions and treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.98\left(\mathrm{CH}_{3}\right), 0.95$ (aromatic CH$)$ and $1.00 \AA$ (aliphatic CH), and $\mathrm{N}-\mathrm{H}=0.88 \AA$. $U_{\text {iso }}$ values for primary H atoms were fixed at 1.5 times and tertiary H atoms at 1.2 times $U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
A view of (I), with displacement ellipsoids drawn at the 30% probability level.

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: XP in SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: $X P$ in $S H E L X T L$.

The authors thank DFG and EPSRC for finiancal support.

References

Braunschweig, H., Breitling, F. M., von Koblinski, C., White, A. J. P. \& Williams, D. J. (2004). Dalton Trans. 6, 938-943
Braunschweig, H., von Koblinski, C., Breitling, F. M., Radacki, K., Hu, C., Wesemann, L., Marx, T. \& Pantenburg, I. (2003). Inorg. Chim. Acta, 350, 467-474.
Braunschweig, H., von Koblinski, C. \& Englert, U. (2000). Chem. Commun. 12, 1049-1050.
Bruker (2001). SMART-NT (Version 5.63) and SAINT-Plus-NT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2002). SADABS. Version 2.10. University of Göttingen, Germany.
Stevens, J. C. (1994). Stud. Surf. Sci. Catal. 89, 277-284.

